Robust Grid Adaptation for Efficient Uncertainty Quantification
نویسندگان
چکیده
In the recent past, adjoint methods have been successfully applied in error estimation of integral outputs (functionals) of the numerical solution of partial differential equations. The adjoint solution can also be used as a grid adaptation indicator, with the objective of optimally targeting and reducing the numerical error in the functional of interest below a prespecified threshold. In situations where we seek to quantify the effect of aleatory uncertainties on statistical moments of the output functional, it becomes necessary to evaluate the functional accurately at multiple sample points in probability space. If the numerical accuracy of these sample evaluations is not uniform, variations in thenumerical error canaffect the evaluation of the statisticalmoments.Although it is possible to independently adapt the meshes to obtain more accurate solutions at each sample point in stochastic space, such a procedure can be both cumbersome and computationally expensive. To improve the efficiency of this process, a new robust grid adaptation technique is proposed that is aimed at minimizing the numerical error over a range of variations of the uncertain parameters of interest about a nominal state. Using this approach, it is possible to generate computational grids that are insensitive to small variations of the uncertain parameters that can both locally and globally change the solution and, as a result, the error distribution. This is in contrast with classical adjoint techniques, which seek to adapt the gridwith the aim ofminimizing numerical errors for a specific flow condition (and geometry). It is demonstrated that flow computations on these robust grids result in low numerical errors under the expected range of variations of the uncertain input parameters. The effectiveness of this strategy is demonstrated in problems involving the Poisson equation and the Euler equations at transonic and supersonic/hypersonic speeds.
منابع مشابه
Quantification of Uncertainty in Computational Fluid Dynamics
This review covers Verification, Validation, Confirmation and related subjects for computational fluid dynamics (CFD), including error taxonomies, error estimation and banding, convergence rates, surrogate estimators, nonlinear dynamics, and error estimation for grid adaptation vs Quantification of Uncertainty.
متن کاملDesigning a Fractional Order PID Controller for a Two-Area Micro-Grid under Uncertainty of Parameters
Increasing the number of microgrids has raised the complexity and nonlinearity of the power system and conventional controllers do not present acceptable efficiency in a wide range of operation points. In this study, a fractional order proportional–integral–derivative controller optimized with hybrid grey wolf-pattern search algorithm is used to control the frequency of each area of the microgr...
متن کاملSimplex Elements Stochastic Collocation in Higher-Dimensional Probability Spaces
A Simplex Elements Stochastic Collocation (SESC) method is introduced for robust and efficient propagation of uncertainty through computational models. The presented non– intrusive Uncertainty Quantification (UQ) method is based on adaptive grid refinement of a simplex elements discretization in probability space. The approach is equally robust as Monte Carlo (MC) simulation in terms of the Ext...
متن کاملA Bootstrap Interval Robust Data Envelopment Analysis for Estimate Efficiency and Ranking Hospitals
Data envelopment analysis (DEA) is one of non-parametric methods for evaluating efficiency of each unit. Limited resources in healthcare economy is the main reason in measuring efficiency of hospitals. In this study, a bootstrap interval data envelopment analysis (BIRDEA) is proposed for measuring the efficiency of hospitals affiliated with the Hamedan University of Medical Sciences. The propos...
متن کاملکاهش مصرف سوخت در یک سیستم تغذیه جریان متناوب مستقل با به کارگیری مشخصههای کنترل فرکانس غیرخطی مقاوم
This paper presents nonlinear frequency control characteristic for a dispatchable source to reduce fuel consumption in a standalone AC power system. Power management used in grid is local. The proposed frequency characteristics that are employed for the sources are designed based on grid model. To have robust frequency control characteristics, uncertainty in grid model that consists of load mod...
متن کامل